Math blogger Joseph Nebus does another A – Z series of posts, explaining technical terms in mathematics. He asked readers for their favorite pick of things to be covered in this series, and I came up with *General Covariance.* Which he laid out in this post – in his signature style, using neither equations nor pop-science images like deformed rubber mattresses – but ‘just words’. As so often, he manages to explain things really well!

Actually, I asked for that term as I am in the middle of yet another physics (re-)learning project – in the spirit of my ventures into QFT a while back.

Since a while I have now tried (on this blog) to cover only the physics related to something I have both education in and hands-on experience with. Re General Relativity I have neither: My PhD was in applied condensed-matter physics – lasers, superconductors, optics – and this article by physicist Chad Orzel about What Math Do You Need For Physics? covers well what sort of math you need in that case. Quote:

I moved into the lab, and was concerned more with technical details of vacuum pumps and lasers and electronic circuits and computer data acquisition and analysis.

So I cannot find the remotest way to justify why I would need General Relativity on a daily basis – insider jokes about very peculiarly torus-shaped underground water/ice tanks for heat pumps aside.

My motivation is what I described in this post of mine: Math-heavy physics is – for me, that means a statistical sample of 1 – the best way of brazing myself for any type of tech / IT / engineering work. This positive effect is not even directly related to math/physics aspects of that work.

But I also noticed ‘on the internet’ that there is a community of science and math enthusiasts, who indulge in self-studying theoretical physics seriously as a hobby. Often these are physics majors who ended up in very different industry sectors or in management / ‘non-tech’ jobs and who want to reconnect with what they once learned.

**For those fellow learners I’d like to publish links to my favorite learning resources.**

There seem to be two ways to start a course or book on GR, and sometimes authors toggle between both modes. You can start from the ‘tangible’ physics of our flat space (spacetime) plus special relativity and then gradually ‘add a bit of curvature’ and related concepts. In this way the introduction sounds familiar, and less daunting. Or you could try to introduce the mathematical concepts at a most rigorous abstract level, and return to the actual physics of our 4D spacetime and matter as late as possible.

The latter makes a lot of sense as you better unlearn some things you took for granted about vector and tensor calculus in flat space. A vector must no longer be visualized as an arrow that can be moved around carelessly in space, and one must be very careful in visualizing what transforming coordinates really means.

**For motivation or as an ‘upper level pop-sci intro’…**

… **Richard Feynman’s lecture on curved space** might be a very good primer. Feynman explains what curved space and curved spacetime actually mean. Yes, he is using that infamous beetle on a balloon, but he also gives some numbers obtained by back-of-the-envelope calculations that explain important concepts.

**For learning about the mathematical foundations …**

I cannot praise these **Lectures given at the Heraeus International Winter School Gravity and Light 2015** enough. Award-winning lecturer Frederic P. Schuller goes to great lengths to introduce concepts carefully and precisely. His goal is to make all implicit assumptions explicit and avoid allusions to misguided ‘intuitions’ one might got have used to when working with vector analysis, tensors, gradients, derivatives etc. in our tangible 3D world – covered by what he calls ‘undergraduate analysis’. Only in lecture 9 the first connection is made back to Newtonian gravity. Then, back to math only for some more lectures, until finally our 4D spacetime is discussed in lecture 13.

Schuller mentions in passing that Einstein himself struggled with the advanced math of his own theory, e.g. in the sense of not yet distinguishing clearly between the mathematical structure that represents the real world (a topological manifold) and the multi-dimensional chart we project our world onto when using an atlas. It is interesting to pair these lectures with this paper on the history and philosophy of general relativity – a link Joseph Nebus has pointed to in his post on covariance.

Learning physics or math from videos you need to be much more disciplined than with plowing through textbooks – in the sense that you absolutely have to do every single step in a derivation on your own. It is easy to delude oneself that you understood something by following a derivation passively, without calculating anything yourself. So what makes these lectures so useful is that tutorial sessions have been recorded as well: Tutorial sheets and videos can be found here.

(*Edit*: The Youtube channel of the event has not all the recordings of the tutorial sessions, only this conference website has. It seems the former domain does not work any more, but the content is perserved at gravity-and-light.herokuapp.com)

You also find brief notes for these lectures here.

**For a ‘physics-only’ introduction …**

… I picked a classical, ‘legendary’ resource: Landau and Lifshitz give an introduction to General Relativity in the last third of the second volume in their Course of Theoretical Physics,** The Classical Theory of Fields. **Landau and Lifshitz’s text is terse, perhaps similar in style to Dirac’s classical introduction to quantum mechanics. No humor, but sublime and elegant.

Landau and Lifshitz don’t need manifolds nor tangent bundles, and they use the 3D curvature tensor of space a lot in addition to the metric tensor of 4D spacetime. They introduce concepts of differences in space and time right from the start, plus the notion of simultaneity. Mathematicians might be shocked by a somewhat handwaving, ‘typical physicist’s’ way to deal with differentials, the way vectors on different points in space are related, etc. – neglecting (at first sight, explore every footnote in detail!) the tower of mathematical structures you actually need to do this precisely.

But I would regard Lev Landau sort of a Richard Feynman of The East, so it takes his genius not make any silly mistakes by taking the seemingly intuitive notions too literally. And I recommend this book only when combined with a most rigorous introduction.

**For additional reading and ‘bridging the gap’…**

I recommend Sean Carroll’s **Lecture Notes on General Relativity** from 1997 (precursor of his textbook), together with his short **No-Nonsense Introduction to GR** as a summary. Carroll switches between more intuitive physics and very formal math. He keeps his conversational tone – well known to readers of his popular physics books – which makes his lecture notes a pleasure to read.

__________________________________

So this was a long-winded way to present just a bunch of links. This post should also serve as sort of an excuse that I haven’t been really active on social media or followed up closely on other blogs recently. It seems in winter I am secluding myself from the world in order to catch up on theoretical physics.