Where to Find What?

I have confessed on this blog that I have Mr. Monk DVDs for a reason. We like to categorize, tag, painstakingly re-organize, and re-use. This is reflected in our Innovations in Agriculture …

The Seedbank: Left-over squared timber met the chopsaw.

The Nursery: Rebirth of copper tubes and newspapers.

… as well as in my periodical Raking The Virtual Zen Garden: Updating collections of web resources, especially those related to the heat pump system.

Here is a list of lists, sorted by increasing order of compactification:

But thanks to algorithms, we get helpful advice on presentation from social media platforms: Facebook, for example, encouraged me to tag products in the following photo, so here we go:

“Hand-crafted, artisanal, mobile nursery from recycled metal and wood, for holding biodegradable nursery pots.” Produced without crowd-funding and not submitted to contests concerned with The Intersection of Science, Art, and Innovation.

Ice Storage Hierarchy of Needs

Data Kraken – the tentacled tangled pieces of software for data analysis – has a secret theoretical sibling, an older one: Before we built our heat source from a cellar, I developed numerical simulations of the future heat pump system. Today this simulation tool comprises e.g. a model of our control system, real-live weather data, energy balances of all storage tanks, and a solution to the heat equation for the ground surrounding the water/ice tank.

I can model the change of the tank temperature and  ‘peak ice’ in a heating season. But the point of these simulations is rather to find out to which parameters the system’s performance reacts particularly sensitive: In a worst case scenario will the storage tank be large enough?

A seemingly fascinating aspect was how peak ice ‘reacts’ to input parameters: It is quite sensitive to the properties of ground and the solar/air collector. If you made either the ground or the collector just ‘a bit worse’, ice seems to grow out of proportion. Taking a step back I realized that I could have come to that conclusion using simple energy accounting instead of differential equations – once I had long-term data for the average energy harvesting power of the collector and ground. Caveat: The simple calculation only works if these estimates are reliable for a chosen system – and this depends e.g. on hydraulic design, control logic, the shape of the tank, and the heat transfer properties of ground and collector.

For the operations of the combined tank+collector source the critical months are the ice months Dec/Jan/Feb when air temperature does not allow harvesting all energy from air. Before and after that period, the solar/air collector is nearly the only source anyway. As I emphasized on this blog again and again, even during the ice months, the collector is still the main source and delivers most of the ambient energy the heat pump needs (if properly sized) in a typical winter. The rest has to come from energy stored in the ground surrounding the tank or from freezing water.

I am finally succumbing to trends of edutainment and storytelling in science communications – here is an infographic:

Ambient energy needed in Dec/Jan/Fec - approximate contributions of collector, ground, ice

(Add analogies to psychology here.)

Using some typical numbers, I am illustrating 4 scenarios in the figure below, for a  system with these parameters:

  • A cuboid tank of about 23 m3
  • Required ambient energy for the three ice months is ~7000kWh
    (about 9330kWh of heating energy at a performance factor of 4)
  • ‘Standard’ scenario: The collector delivers 75% of the ambient energy, ground delivers about 18%.
  • Worse’ scenarios: Either collector or/and ground energy is reduced by 25% compared to the standard.

Contributions of the three sources add up to the total ambient energy needed – this is yet another way of combining different energies in one balance.

Contributions to ambient energy in ice months - scenarios.

Ambient energy needed by the heat pump in  Dec+Jan+Feb,  as delivered by the three different sources. Latent ‘ice’ energy is also translated to the percentage of water in the tank that would be frozen.

Neither collector nor ground energy change much in relation to the base line. But latent energy has to fill in the gap: As the total collector energy is much higher than the total latent energy content of the tank, an increase in the gap is large in relation to the base ice energy.

If collector and ground would both ‘underdeliver’ by 25% the tank in this scenario would be frozen completely instead of only 23%.

The ice energy is just the peak of the total ambient energy iceberg.

You could call this system an air-geothermal-ice heat pump then!

Frozen Herbs and Latent Energy Storage

… having studied one subject, we immediately have a great deal of direct and precise knowledge … of another.

Richard Feynman

Feynman referred to different phenomena that can be described by equations of the same appearance: Learning how to calculate the distribution of electrical charges gives you the skills to simulate also the flow of heat.

But I extend this to even more down-to-earth analogies – such as the design of a carton of frozen herbs resembling our water-tight underground tank.

(This is not a product placement.)

No, just being a container for frozen stuff is too obvious a connection!

Maybe it is the reclosable lid covering part of the top surface?

Lid of underground water/ice storage tank.

No, too obvious again!

Or it is the intriguing ice structures that grow on the surface: in opened frozen herb boxes long forgotten in the refrigerator – or on a gigantic ice cube in your tank:

Ice Storage Challenge of 2015 - freezing 15m3 of water after having turned off the solar/air collector.

The box of herbs only reveals its secret when dismantled carefully. The Chief Engineer minimizes its volume as a dedicated waste separating citizen:

… not just tramping it down (… although that sometimes helps if some sensors do not co-operate).

He removes the flaps glued to the corners:

And there is was, plain plane and simple:

The Chief Engineer had used exactly this folding technique to cover the walls and floor of the former root cellar with a single piece of pond liner – avoiding to cut and glue the plastic sheet.

How Does It Work? (The Heat Pump System, That Is)

Over the holidays I stayed away from social media, read quantum physics textbooks instead, and The Chief Engineer and I mulled over the fundamental questions of life, the universe and everything. Such as: How to explain our heat pump system?

Many blog postings were actually answers to questions, and am consolidating all these answers to frequently asked questions again in a list of such answers. However, this list has grown quickly.

An astute reader suggested to create an ‘animation’ of the gradual evolution of the system’s state. As I learned from discussions, one major confusion was related to the role of the solar collector and the fact that you have to factor in the history of the heat source: This is true for every heat pump system that uses a heat source that can be ‘depleted’, in contrast to a flow of ground water at a constant temperature for example. With the latter, the ‘state’ of the system only depends on the current ambient temperature, and you can explain it in a way not too different from pontificating on a wood or gas boiler.

One thing you have to accept though is how a heat pump as such works: I have given up to go into thermodynamical details, and I also think that the refigerator analogy is not helpful. So for this pragmatic introduction a heat pump is just a device that generates heating energy as an output, the input energy being electrical energy and heat energy extracted from a rather cold heat source somewhere near the building. For 8kW heating power you need about 2kW electrical energy and 6kW ambient energy. The ratio of 8kW and 2kW is called the coefficient of performance.

What the typical intro to heat pumps in physics textbooks does not point out is that the ambient heat source actually has to be able to deliver that input energyduring a whole heating season. There is no such thing as the infinite reservoir of energy usually depicted as a large box. Actually, the worse the performance of a heat pump is – the ratio of output heat energy and input electrical energy, the smaller are the demands on the heat source. The Chief Engineer has coined the term The Heat Source Paradox for this!

The lower the temperature of the heat source, the smaller the coefficient of performance is: So if you run an air source heat pump in mid-winter (using a big ventilator) then less energy is extracted from that air source than a geothermal heat pump would extract from ground. But if you build a geothermal heat source that’s too small in relation to a building’s heating demands, you see the same effect: Ground freezes, source temperature decreases, performance decreases, and you need more electrical energy and less ambient energy.

I am harping on the role of the heat source as the whole point of our ‘innovation’ is our special heat source that has two components, both of them being essential: An unglazed solar collector and an underground water / ice tank plus the surrounding ground. The solar collector allows to replenish the energy stored in the tank quickly, even in winter, and the tank is a buffer: When no energy is harvested by the collector at ambient temperatures below 0°C water freezes and releases latent heat. So you can call that an air heat pump with a huge, silent and mainentance-free ‘absorber’ plus a buffer that provides energy for periods of frost and that allows for storing all the energy you don’t need immediately. Ground does provide some energy as well, and I am planning to post about my related simulations. It can be visulized as an extension of the ice / water energy storage into the surroundings. But the active volume or area of ground is smaller than for geothermal systems as most of the ambient energy actually comes from the solar collector: The critical months in our climate are Dec-Jan-Feb: Before and after, the solar collector would be sufficient as the only heat source. In the three ‘ice months’ water is typically frozen in the tank, but even then the solar collector provides for 75-80% of the ambient energy needed to drive the heat pump.

Components are off-the-shelf products, actually rather simple and cheap ones, such as the most stupid, non-smart brine-water heat pump. What is special is 1) the arrangement of the heat exchanger in the water tank and 2) the custom control logic, that is programming of the control unit.

So here is finally the series of images of the system’s state, shown in a gallery and with captions: You can scroll down to see the series embedded in the post, or click on the first image to see an enlarged view and then click through the slide-show.

Information for German readers: This post contains the German version of this slide-show.

Economics of the Solar Collector

In the previous post I gave an overview of our recently compiled data for the heat pump system.

The figure below, showing the seasonal performance factor and daily energy balances, gave rise to an interesting question:

In February the solar collector was off for research purposes, and the performance factor was just a bit lower than in January. Does the small increase in performance – and the related modest decrease in costs of electrical energy – justify the investment of installing a solar collector?

Monthly Performance Factor, Heat Pump System

Monthly heating energy provided by the heat pump – total of both space heating and hot water, related electrical input energy, and the ratio = monthly performance factor. The SPF is in kWh/kWh.

Daily energy balances, heat pump system, season 2014-2015

Daily energies: 1) Heating energy delivered by the heat pump. Heating energy = electrical energy + ambient energy from the tank. 2) Energy supplied by the collector to the water tank, turned off during the Ice Storage Challenge. Negative collector energies indicate cooling of the water tank by the collector during summer nights. 200 kWh peak in January: due to the warm winter storm ‘Felix’.

Depending on desired pay-back time, it might not – but this is the ‘wrong question’ to ask. Without the solar collector, the performance factor would not have been higher than 4 before it was turned off; so you must not compare just these two months without taking into account the history of energy storage in the whole season.

Bringing up the schematic again; the components active in space heating mode plus collector are highlighted:

Space heating with solar collector on, heat pump system punktwissen.

(1) Off-the-shelf heat pump. (2) Energy-efficient brine pump. (3) Underground water tank, can also be used as a cistern. (4) Ribbed pipe unglazed solar collector (5) 3-way valve: Diverting brine to flow through the collector, depending on ambient temperature. (6) Hot water is heated indirectly using a large heat exchanger in the tank. (7) Buffer tank with a heat exchanger for cooling. (8) Heating circuit pump and mixer, for controlling the supply temperature. (9) 3-way valve for switching to cooling mode. (10) 3-way valve for toggling between room heating and hot water heating.

The combination of solar collector and tank is ‘the heat source’, but the primary energy source is ambient air. The unglazed collector allows for extracting energy from it efficiently. Without the tank this system would resemble an air heat pump system – albeit with a quiet heat exchanger instead of a ventilator. You would need the emergency heating element much more often in a typical middle European winter, resulting in a lower seasonal performance factor. We built this system also because it is more economical than a noisy and higher-maintenance air heat pump system in the long run.

Our measurements over three years show that about 75%-80% of the energy extracted from the tank by the heat pump is delivered to it by the solar collector in the same period (see section ‘Ambient Energy’ in monthly and yearly overviews). The remaining energy is from surrounding ground or freezing water. The water tank is a buffer for periods of a few very cold days or weeks. So the solar collector is an essential component – not an option.

In Oct, Nov, and March typically all the energy needed for heating is harvested by the solar collector in the same month. In ‘Ice Months’  Dec, Jan, Feb freezing of water provides for the difference. The ice cube is melted again in the remaining months, by the surplus of solar / air energy – in summer delivered indirectly via ground.

The winter 2014/2015 had been unusually mild, so we had hardly created any ice before February. The collector had managed to replenish the energy quickly, even in December and January. The plot of daily energies over time show that the energy harvested by the collector in these months is only a bit lower than the heating energy consumed by the house! So the energy in the tank was filled to the brim before we turned the collector off on February 1. Had the winter been harsher we might have had 10 m3 of ice already on that day, and we might have needed 140kWh per day of heating energy, rather than 75kWh. We would have encountered  the phenomena noted during the Ice Storage Challenge earlier.

This post has been written by Elke Stangl, on her blog. Just adding this in case the post gets stolen in its entirety again, as it happened to other posts tagged with ‘Solar’ recently.

Heat Pump System Data: Three Seasons 2012 – 2015

We have updated the documentation of monthly and seasonal measurement data – now including also the full season September 2014 to August 2015.

The overall Seasonal Performance Factor was 4,4 – despite the slightly lower numbers in February and March, when was the solar collector was off during the Ice Storage Challenge.

Edit: I have learned from a question that the SPF is also calculated in BTU/Wh. ‘Our’ SPF uses the same units in nominator and denominator, so 4,4 is in Wh/Wh. The conversion factor is about 3,4 (note that I use a decimal comma BTW), so our SPF [kWh/kWh] is equivalent to an SPF [BTU/Wh] ~ 15.

Monthly Performance Factor, Heat Pump System

Monthly heating energy provided by the heat pump – total of both space heating and hot water water, related electrical input energy, and the ratio = monthly performance factor. The SPF is in kWh/kWh.

The SPF determines economics of heating with a heat pump.

It’s time to compare costs again, based on current minimum prices of electricity and natural gas in our region in Austria (published by regulator e-control):

  • We need about 20.000 kWh (*) of heating energy per year.
  • Assuming a nearly perfect gas boiler with an efficiency of 95%, we would need about 21.050 kWh of gas.
  • Cost of natural gas incl. taxes, grid fees: ~ 0,0600 € / kWh
  • Yearly energy costs for heating with gas would be: € 1.260
  • Given an SPF of 4,4 for the heat pump, 20.000 kWh heating energy demands translate to 4.545 kWh of electrical energy.
  • Costs of electricity incl. taxes, grid: ~ 0,167 € / kWh
  • Yearly energy costs for heating with the heat pump: € 760
  • Yearly savings with the heat pump: € 500 or 40% of the costs of gas.

(*) As indicated in the PDF, In the past year only the ground floor was heated by the heat pump. So we needed only 13.300 kWh. In the first floor we got rid of the remainders of the old roof truss. The season 2012/2013 was more typical, requiring about 19.700 kWh.

The last winter was not too extreme – we needed 100 kWh maximum heating energy per day. The collector was capable of harvesting about 50 kWh / day:

Daily energy balances, heat pump system, season 2014-2015

Daily energies: 1) Heating energy delivered by the heat pump. Heating energy = electrical energy + ambient energy from the tank. 2) Energy supplied by the collector to the water tank, turned off during the Ice Storage Challenge. Negative collector energies indicate cooling of the water tank by the collector during summer nights. 200 kWh peak in January: due to the warm winter storm ‘Felix’.

Ice formation in this season was mainly triggered by turning off the solar collector deliberately. As soon as we turn the collector on again in March the ice was melted quickly, and the temperature increased to the set value of 8°C – a value picked deliberately to prepare for cooling in summer:

Temperatures and ice formation, heat pump system, season 2014-2015

Daily averages of the air temperature and the temperature in the water tank plus volume of ice created by extracting heat from the heat source (water tank).

Further reading / about the system:
I am maintaining a list of answers to Frequently Asked Questions here.

Having Survived the Hottest July Ever (Thanks, Natural Cooling!)

July 2015 was the hottest July ever since meteorological data had been recorded in Austria (since 248 years). We had more than 38°C ambient air temperature at some days; so finally a chance to stress-test our heat pump system’s cooling option.

Heating versus cooling mode

In space heating ‘winter’ mode, the heat pump extracts heat from the heat source – a combination of underground water / ice tank and unglazed solar collector – and heats the bulk volume of the buffer storage tank. We have two heating circuits exchanging heat with this tank – one for the classical old radiators in ground floor, and one for the floor heating loops in the first floor – our repurposed attic.

Space heating with solar collector on, heat pump system punktwissen,

Space heating mode: The heat pump (1) heats the buffer tank (7), which in turn heats the heating circuits (only one circuit shown, each has its circuit pump and mixer control). Heat source: Solar collector (4) and water / ice storage (3) connected in a single brine circuit. The heat exchanger in the tank is built from the same ribbed pipes as the solar collector. If the ambient temperature is too low too allow for harvesting of energy the 3-way valve (5) makes the brine flow bypass the collector.

The heat pump either heats the buffer tank for space heating, or the hygienic tank for hot tap water. (This posting has a plot with heating power versus time for both modes).

We heat hot tap water indirectly, using a hygienic storage tank with a large internal heat exchanger. Therefore we don’t need to fight legionella by heating to high temperatures, and we only need to heat the bulk volume of the tank to 50°C – which keeps the Coefficient of Performance high.

Heating hot water, solar collector off, heat pump system punktwissen

Hot tap water heating mode: The flow of water heated by the heat pump is diverted to the hygienic storage tank (6). Otherwise, the heat source is used in the same way as for space heating. In this picture, the collector is ‘turned off’ – corresponding to heating water on e.g. a very cold winter evening.

In summer, the still rather cold underground water tank can be used for cooling. Our floor heating loops become cooling loops and we simply use the cool water or ice in the underground tank for natural (‘passive’) cooling. So the heat pump can keep heating water – this is different from systems that turn an air-air heat pump into an air conditioner by reverting the cycle of the refrigerant.

Heating hot water in parallel to cooling is beneficial as the heat pump extracts heat from the underground tank and cools it further!

Space cooling while heating hot water, heat pump system punktwissen

Cooling mode: Via automated 3-way valve (9) brine is diverted to flow through the heat exchanger in the buffer tank (7). Water in the buffer tank is cooled down so water in the floor ‘heating’ / cooling loops. If the heat pump operates in parallel to heat hot tap water, it cools the brine.

How we optimize cooling power this summer

Water tank temperature. You could tweak the control to keep the large ice cube as long as possible, but there is a the trade-off: The cooler the tank,  the lower the heat pump’s performance factor in heating mode. This year we kept the tank at 8°C after ‘ice season’ as long as possible. To achieve this, the solar collector is bypassed if ambient temperature is ‘too high’. The temperature in the tank rose quickly in April – so our ice is long melted:

Temperatures and performance factors, July 2015

The red arrow indicates the end of the ice period; then the set temperature of the tank was 8°C (‘Ice storage tank’ is rather a common term denoting this type of heat source than indicating that it really contains ice all the time.) Green arrows indicate three spells of hot weather. The tank’s temperature increased gradually, being heating by the surrounding ground and by space cooling. At the beginning of August its temperature is close to 20°C, so cooling energy has nearly be used up completely.

At the beginning of July the minimum inlet temperature in the floor loops was 17°C, determined by the dew point (monitored by our control system that controls the mixer accordingly); at the end of the month maximum daily ambient air temperatures were greater than 35°C, and the cooling water had about 21°C.

Room temperature. Cooling was activated only if the room temperature in the 1st floor was higher than 24°C – this allows for keeping as much cooling energy as possible for the really hot periods. We feel that 25°C in the office is absolutely OK as temperatures outside are more then 10°C higher.

Scheduling hot water heating. After the installation of our PV panels we set the hot water heating time slots to periods with high solar radiation – when you have more than 2 kW output power on cloudless days. So we utilized the solar energy generator in the most economic way and the heat pump supports cooling exactly when cooling is needed.

Using the collector for cooling in the night. If the ambient temperature drops to a value lower than the tank temperature, the solar collector can actually cool the tank!

Ventilation. I have been asked if we have forced ventilation, ductwork, and automated awnings etc. No, we haven’t – we just open all the windows during the night and ‘manually operated’ shades attached to the outside of the windows. We call them the Deflector Shields:

Ventilation: Night

Manually operated ventilation – to be shut off at sunrise. We had already 30°C air temperature at 08:00 AM on some days.

Deflector shields: Day

South-east deflector shields down. We feel there is still enough light in the (single large) room as we only activate the subset of shields facing the sun directly.

These are details for two typical hot days in July:

Temperature and cooling power for two days in July

The blue line exhibits the cooling power measured for the brine ‘cooling’ circuit. If the heat pump is off, cooling power is about 1 kW; during heat pump operations (blue arrows) 4 kW can be obtained. Night-time ventilation is crucial to keep room temperatures at reasonable levels.

The cooling power is lower than so-called standard cooling load as defined in AC standards – the power required to keep the temperature at about 24°C in steady-state conditions, when ambient temperature would be 30°C and no shades are used. For our attic-office this standard cooling power would amount to more than 10 kW which is higher than the standard (worst case) heating load in winter.

Overall electrical energy balance

I have been asked for a comparison of the energy needed in the house, the heat pump in particular, and the energy delivered by the PV panels and fed in to the grid.

PV numbers in July were not much different from June’s – here is the overview on June and July, maximum PV power on cloudless days has decreased further due to the higher temperatures:

Daily energy balance, PV generation and self-consumption-2015-06-and-2015-07In July, our daily consumption slightly decreased to 9-10 kWh per day, the heat pump needs 1-2 kWh of that. The generator provides for 23 kWh per day,

Currently the weather forecast says, we will have more than 35°C each noon and 20-25° minimum in the night until end of this week. We might experience the utter depletion of our cooling energy storage before it will be replenished again on a rainy next weekend.