Delta Function Haiku

I have proved that a Lorentzian bell curve becomes the Dirac Delta Function in the limit. Now I want to look at another representation of the Delta Function. As this is a shorter proof, a haiku will do.


Infinite numbers
of oscillations added.
Need to damp them down

attach an exponential
for each half of space.

Shut up, calculate.
Imaginaries cancel.
Again, the bell in the limit.


\displaystyle \delta(x) = \int_{-\infty}^{+\infty} \frac{dk}{2\pi} e^{ikx} = \lim_{\varepsilon \to 0} \left [ \int_{-\infty}^{0} \frac{dk}{2\pi} e^{ik(x-i\varepsilon)} + \int_{0}^{+\infty} \frac{dk}{2\pi} e^{ik(x+i\varepsilon)} \right ] =

\displaystyle  \lim_{\varepsilon \to 0} \frac{1}{2\pi} \frac{1}{i} \left [ \left. \frac{e^{ik(x-i\varepsilon)}}{x-i\varepsilon} \right |_{-\infty}^{0} + \left. \frac{e^{ik(x+i\varepsilon)}}{x+i\varepsilon} \right |_{0}^{\infty} \right ] = \lim_{\varepsilon \to 0} \frac{1}{2\pi} \frac{1}{i}  \frac{x + i\varepsilon - x + i\varepsilon}{x^2 + \varepsilon^2} = \lim_{\varepsilon \to 0} \frac{1}{\pi} \frac{\varepsilon}{x^2 + \varepsilon^2}


Leave a Comment

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.