Cistern-Based Heat Pump – Research Done in 1993

One of the most recent search terms on this blog was: ‘cistern for water source heat pump’. I wanted to double-check and searched for this phrase myself.

This was the first Google Search result:

Cistern-Based Water-Source Heat Pump System Design

… a research paper available for download at the website of Iowa Energy Center. (Note that the scanned PDF is 40MB in size.)


A considerable amount of research has been done regarding ground loop heat pump systems which are underground piping networks that extract heat from or dissipate heat to the ground and are coupled with a ground-source heat pump to greatly increase efficiencies for the heating and cooling cycles of the heat pump. The high costs incurred by home owners for installation of such a system is currently a deterrent to their implementation. This paper explores the feasibility of utilizing a submerged concrete water storage vessel, known as a cistern, as a cost effective alternative for storing and transferring geothermal energy for ground-source heat pump systems.

This work was been done as early as in 1993! The authors did theoretical modelling of the expected heat transfer, built a prototype connected to a home, and monitored performance for some weeks.

[For European readers – you will need this:]

They built a working prototype which resembles ours in some aspects – but there is one essential difference: They did not use a solar collector as they considered its contribution not essential. Experiments were done in spring, and future performance monitoring for a whole season had been announced in the paper. But the document was called a final report – so I assume the follow-up project had not been started.

Re-use existing infrastructure: Thousands of cisterns in the midwestern sector of the United States were built about 100 years ago. They were abandoned when home owners got access to running water. It seems that most of these vessels are still in good shape if filled with water all the time. Untapped potential!
We have re-purposed our useless root cellar, and we work with clients who want to re-use cesspits or cisterns. Here is an American home owner’s photo story on her slightly creepy cistern, and from this article I learned those cisterns are often located under the porch – exactly the idea we have come up with when thinking about heat sources.

Kenworthy Hall Kitchen and Cistern

Cistern in Alabama (Wikimedia).

DIY approach: Adams et al. provide a detailed information on prices and services required and they suggest that home owners could install it themselves. Re-purposing an existing vessel is more economic than building any of the standard heat sources – slinky-type ground source collectors, boreholes, or ground-water wells. This is still true today.
The authors said they had already several requests from local home owners who were interested in installing a pilot system.

Historic American Buildings Survey Lester Jones, Photographer February 28, 1940 CISTERN DETAIL AT REAR OF HOUSE - Lemee House, 310 Jefferson Street, Natchitoches, Natchitoches HABS LA,35-NATCH,6-4

Cistern in Louisiana (Wikimedia).

The pilot home’s floor space was about 60 m2 (640 ft2). The research paper includes a detailed home energy audit, similar to the one home owners need to provide when building or selling a house today in Austria. The design heating load – calculated from the building’s heat losses and the difference between the standard room temperature and the minimum ambient temperature – was about 7,6 kW (25.900 Btu/hour).
Since the test site was at 43° latitude, so 5° south to my home village, I suppose the climate is not extremely different or perhaps milder. Here the minimum daily ambient temperatures are about -13°C. In the past 20 years we have encountered this temperature on a single day; so this is a worst case estimate and the typical heating load in winter is much lower. Heating loads are used for comparing building standards, and the heating load is quite high given the small area. A modern insulated building with a 8 kW heating load would be 3 or 4 times larger. Those 8 kW accidentally match our theoretical load (for about 185m2 floor space) – so the size of the heat source should be comparable.

Photocopy of photograph (from Iowa State University Library, Special Collections) Photographer unknown ca. 1911-1926 SOUTH FRONT AND WEST SIDE - Iowa State University, Farm House HABS IOWA,85-AMES,2-5

I wondered how historical buildings in Iowa look like. This farm house is today situated on the campus of Iowa State University (Wikimedia).

The available cistern had a volume of 4200 gallons / 16m3 – this is about the right size for a house with 8 kW of heat losses. The authors state that the pilot building could be heated for 21 days, based on an heat extraction power of 9.000 Btu/hour. This is based on a heating power of a ton (3,5 kW) which is less then half of the design load. I think this is the heat load obtained from their experiment – venting the house to ambient temperature in early April.

The latent heat of water is 92,7 kWh/m3 so about 1.400 kWh can be gained in total. At an worst case load of 7,6 kW and a heat pump’s coefficient of performance  of 4, those 1400 kWh would be depleted after 246 hours, that is about 10 days. This is till not a bad value, and you would rather use some emergency heating system (electrical or stove) than building a bigger tank.

Heat pump and heat distribution: The heating system used in this project a water-air heat pump had been used; the paper contains calculation of the detailed design of the ductwork. The source side of the system is similar to any other water-source heat pump. This seems to be the successor product family.
Heat is transferred by a solution 20% polypropylene glycol in water, providing frost resistance for temperatures greater than -20 F (-11°C). The target side is an air ventilation system – rather uncommon in Austria as here we use mainly floor heating loops.

It was planned to use the ice or cold water created in winter for cooling in summer. This is the same idea we use – it is an added value you get for free as long as you don’t cool the floor below the dew point.

Adams et al.’s heat exchanger used in the cistern was made from copper. They calculated heat transfer for copper pipes versus PE plastic pipes (p.91/92 of the PDF) – and the length of copper pipes would be about 1/3 to 1/4 of plastic pipes. We have picked plastic pipes as they allow for rather easy and flexible installation – and perhaps for future 3D printing of the design 🙂

Water to Air Heat Pump

Water to Air Heat Pump – bigger than water-to-water heat pumps.

Theoretical modelling of heat transfer and size of the heat source: Adams et al. have made an estimate of the heat flow from ground to their cistern. Their goal was to evaluate if an underground vessel would be sufficient as a single heat source. They also wondered if the surface area of the cistern could be compared with the surface area of typical vertical heat exchanger ground loops.

They calculated the steady-state heat flow between a cylinder and the surrounding ground, taking into account the heat conductance of the materials and a constant assumed temperature difference of 15 F (8°C). Their calculated flow is of the same order of magnitude as the heat extracted from the source in their experiments (done in April). As the authors said, this is a very rough first estimate, and calculations are tedious and involve large uncertainties.

We did a numerical simulation of the dynamic change of the temperature distribution in ground, based on weather data gathered at least every hour. Calculating the dynamic heat flow from the temperature gradient at the interface between tank and ground results in a much lower heat transfer. This is in agreement with our own experiments that now cover two full seasons. Uncertainties can be reduced by modifying parameters such as the hard-to-calculate heat transfer coefficients of the ribbed pipe heat exchangers.

Unterirdische Zisterne

The pilot system described in the paper uses a cylindrical cistern – perhaps similar to modern ones, such as this (Wikimedia).

Solar collector versus ground energy: Heat transfer from ground is relevant, so one must not insulate the tank. But the main contribution to the net flow to our tank originates from the solar collector. The tank is a buffer that bridges periods of time when the average ambient temperature is much below 0°C. Its direct contribution per interface area should not be compared to the heat exchanger loops’ surface area – it is lower than the typical heat transfer rate per area of ground harvested via ground loops (~20W/m2).

The solar collector was also dismissed for economic reasons – the authors of the 1993 papers calculated a payback time of 18 years. I was not able to identify the collector based on the brand name in the paper. The 1990s have been the golden era of DIY flat plate solar collectors in Austria – the time before companies had manufactured off-the-shelf products. In 2012 Austria is worldwide no. 2 terms of installed solar collector area per inhabitants – and is in top 8 even in absolute numbers, see p.12 of this report. I had once figured flat plat collectors are cheaper than evacuated vacuum tube collectors – but the latter are actually more popular in China. This report also shows that unglazed collectors are quite popular in the US. I wonder if Adams et al. had actually evaluated the same type of ribbed pipe collector we have picked because of superior heat transfer properties, and if such collectors had been considered too expensive in the US 20 years ago.

Monitoring and some adventures: The authors used a pragmatic approach I liked a lot: Do some theoretical estimates first to get a feeling for the numbers, and to evaluate the feasibility … then build a prototype and monitor it closely.
They used an Apple 2 computer for data acquisition, not so different from our first Mac SE. In some sense it is a good thing that they overestimated the contribution from ground as they might not have built the system otherwise.

Apple II plus

Apple II plus (Wikimedia)

This is an academic paper but the authors included some ‘tales from the field’, fighting with fluctuating output of sensors and …

To add to our problems, in trying to fix temperature transducers in the tank, we had left the tank open without water too long during a wet spell, and the tank wall broke [*] in due to the pressure difference between the tank and the ground. We tried to patch it the best we could (a novel could be written on this experience), and filled it with water again. However, the tank continued to leak and we had to continue to add water to it to maintain a desired level in the tank.

[*] I was surprised that wall if this cistern was just an inch thick – much thinner than modern rain water cisterns.

They factored in this unplanned addition of water – adding another Basic program (I wax nostalgic about the code listings in the paper!) that evaluates the balance of heat energy.

So in summary: Kudos to those pioneer engineers! If anybody reading this knows anything about follow-up projects done in Iowa in the 1990s, let met know! I haven’t researched the Iowa climate in detail. I cannot rule out that their heat source might have performed better than expected from experiments in middle Europe but I would be surprise if this cistern without a solar collector would have sustained a whole heating season.

I’d finally add our own schematic drawing again for comparison. The pilot system described in the 1993 paper does not user hot water tanks, and heating of hot tap water is not covered.

punktwissen heat pump system, water tank and solar collector as heat source

Our own system, built in 2012. Components also used in the experiment in 1993: Cistern as water tank, water-air-heat pumps, ductwork directly attached to it instead of buffer and hot water tank. More details in this post.


10 thoughts on “Cistern-Based Heat Pump – Research Done in 1993

  1. I discussed your post with my husband, especially the question you asked about any of us knowing more about various research projects. Sometimes he encounters such things, but not one on cistern based heat pumps. We’ll let you know if that changes. PS – I like your on-going evolution of aesthetics on your blog.

  2. You scared me … I thought ‘tales from the field’ was going to include a story about rodents (of ‘unusual size’ perhaps (have you seen the movie … The Princess Bride)) falling into the open cistern! I’m sure that you’ve considered that readily available concrete septic tanks could also provide a convenient reservoir. We have one which holds either 1,000 or 2,000 (I cannot remember) … a nice volume for your application. Since you like to used propylene glycol (or ethylene glycol) these reservoirs could not be used in the traditional sense of a cistern (for emergency drinking water). Anyway … I’m still waiting for the announced IPO so Maurice and I can invest! D

    • Stories about rodents are probably what some readers of this blog might actually eagerly expect – as my two year old article about mice electrocuted accidentally in our microwave is more popular than ever (like last late autumn and winter – a seasonal evergreen post) and ‘Can mice get into a microwave’ is one of the most popular search terms ever. As this happened to us twice (mouse entering the rear part of the microwave through the vent) we have unplugged it now, and we currently we feed ‘this year’s’ cute little rodent 🙂

      Glycol is only in the heat exchanger tubes travsersing the cistern, not in the bulk volume of the cistern, so the tank actually can be used as a traditional cistern in addition to serving as a heat sink. There is a risk of ‘poisoning’ the cistern in case there is a leak – but this is the same risk as if solar thermal heating panels (without a heat pump, very common in Austria) are used and leaked glycol is collected by the gutters. I believe the risk is higher in this case as the rooftop collectors get much hotter which puts more strain on materials and connections.

      One of our clients plans to do this (using the tank also as a cistern). The tank has to be bigger in this case and the control system needs to make sure that water is replenished if the level is below a critical value.

      So far venture capitalists have not knocked on our door! I think it is obvious we are more of an artisanal workshop without the potential for global expansion 🙂

  3. That’s an interesting basis for choice of plastic–3D printing. Very forward thinking. I assumed it was more about saving a whole load f money on the install given the current price of copper. Besides, plastic is so very much more easy to work with.
    Interesting that you came across that research. On a wider level it seems to me that in these days of un-replicated research a lot of real gems (research gems that is) are out there not having nearly any of the effect they should.
    I am intrigued by that banner photo. Is it from this year? It’s unseasonably mild here where I am. It actually was at 12C for most of the day–third double-digit day in a row!. Zero is a much more typical value for us.

    • The banner photo is ten years old – I had to search a while until I found a typical winter photo 🙂 … one that matches the ‘WordPress blog snow’. We haven’t had any snow yet this year and it is still rather mild here, too.

      The comment on 3D printing was not meant serious yet but it seems like a logical consequence … whenever printing out plastic parts will become easier to do and cheaper than ordering parts and cutting and connecting those. We already work in ‘remote-only’ heat pump system design projects, sending documentation to clients, and programming the control system remotely. So perhaps one day we will also send 3D printing design files instead of how-to-build guidelines for the collector 🙂

    • You would not rely on rain water if you use a cistern as a heat pump’s heat source and this ‘cistern’ is not necessarily still used as such: The ‘cistern’ can be just filled with water (from the tap) once for all. It can also be used as cistern in parallel to serving as a heat pump but then the control system needs to make sure that enough water is replenished from a tap in case there is not enough rain.
      We use an earth cellar turned tank as a heat source: Lined with pond, and filled with 25.009 liters of water – no rain water and no cistern usage. But we also have planned a system for a client who uses the tank both as a heat sink and as a cistern. The size of the tank is then bigger than it needed to be for heating purpose only, and the cistern’s control system would let water flow into the tank in case the level fell below a defined threshold.

Leave a Comment

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s