Learning General Relativity

Math blogger Joseph Nebus does another A – Z series of posts, explaining technical terms in mathematics. He asked readers for their favorite pick of things to be covered in this series, and I came up with General Covariance. Which he laid out in this post – in his signature style, using neither equations nor pop-science images like deformed rubber mattresses – but ‘just words’. As so often, he manages to explain things really well!

Actually, I asked for that term as I am in the middle of yet another physics (re-)learning project – in the spirit of my ventures into QFT a while back.

Since a while I have now tried (on this blog) to cover only the physics related to something I have both education in and hands-on experience with. Re General Relativity I have neither: My PhD was in applied condensed-matter physics – lasers, superconductors, optics – and this article by physicist Chad Orzel about What Math Do You Need For Physics? covers well what sort of math you need in that case. Quote:

I moved into the lab, and was concerned more with technical details of vacuum pumps and lasers and electronic circuits and computer data acquisition and analysis.

So I cannot find the remotest way to justify why I would need General Relativity on a daily basis – insider jokes about very peculiarly torus-shaped underground water/ice tanks for heat pumps aside.

My motivation is what I described in this post of mine: Math-heavy physics is – for me, that means a statistical sample of 1 – the best way of brazing myself for any type of tech / IT / engineering work. This positive effect is not even directly related to math/physics aspects of that work.

But I also noticed ‘on the internet’ that there is a community of science and math enthusiasts, who indulge in self-studying theoretical physics seriously as a hobby. Often these are physics majors who ended up in very different industry sectors or in management / ‘non-tech’ jobs and who want to reconnect with what they once learned.

For those fellow learners I’d like to publish links to my favorite learning resources.

There seem to be two ways to start a course or book on GR, and sometimes authors toggle between both modes. You can start from the ‘tangible’ physics of our flat space (spacetime) plus special relativity and then gradually ‘add a bit of curvature’ and related concepts. In this way the introduction sounds familiar, and less daunting. Or you could try to introduce the mathematical concepts at a most rigorous abstract level, and return to the actual physics of our 4D spacetime and matter as late as possible.

The latter makes a lot of sense as you better unlearn some things you took for granted about vector and tensor calculus in flat space. A vector must no longer be visualized as an arrow that can be moved around carelessly in space, and one must be very careful in visualizing what transforming coordinates really means.

For motivation or as an ‘upper level pop-sci intro’…

Richard Feynman’s lecture on curved space might be a very good primer. Feynman explains what curved space and curved spacetime actually mean. Yes, he is using that infamous beetle on a balloon, but he also gives some numbers obtained by back-of-the-envelope calculations that explain important concepts.

For learning about the mathematical foundations …

I cannot praise these Lectures given at the Heraeus International Winter School Gravity and Light 2015 enough. Award-winning lecturer Frederic P. Schuller goes to great lengths to introduce concepts carefully and precisely. His goal is to make all implicit assumptions explicit and avoid allusions to misguided ‘intuitions’ one might got have used to when working with vector analysis, tensors, gradients, derivatives etc. in our tangible 3D world – covered by what he calls ‘undergraduate analysis’. Only in lecture 9 the first connection is made back to Newtonian gravity. Then, back to math only for some more lectures, until finally our 4D spacetime is discussed in lecture 13.

Schuller mentions in passing that Einstein himself struggled with the advanced math of his own theory, e.g. in the sense of not yet distinguishing clearly between the mathematical structure that represents the real world (a topological manifold) and the multi-dimensional chart we project our world onto when using an atlas. It is interesting to pair these lectures with this paper on the history and philosophy of general relativity – a link Joseph Nebus has pointed to in his post on covariance.

Learning physics or math from videos you need to be much more disciplined than with plowing through textbooks – in the sense that you absolutely have to do every single step in a derivation on your own. It is easy to delude oneself that you understood something by following a derivation passively, without calculating anything yourself. So what makes these lectures so useful is that tutorial sessions have been recorded as well: Tutorial sheets and videos can be found here.
(Edit: The Youtube channel of the event has not all the recordings of the tutorial sessions, only this conference website has. It seems the former domain does not work any more, but the content is perserved at gravity-and-light.herokuapp.com)

You also find brief notes for these lectures here.

For a ‘physics-only’ introduction …

… I picked a classical, ‘legendary’ resource: Landau and Lifshitz give an introduction to General Relativity in the last third of the second volume in their Course of Theoretical Physics, The Classical Theory of Fields. Landau and Lifshitz’s text is terse, perhaps similar in style to Dirac’s classical introduction to quantum mechanics. No humor, but sublime and elegant.

Landau and Lifshitz don’t need manifolds nor tangent bundles, and they use the 3D curvature tensor of space a lot in addition to the metric tensor of 4D spacetime. They introduce concepts of differences in space and time right from the start, plus the notion of simultaneity. Mathematicians might be shocked by a somewhat handwaving, ‘typical physicist’s’ way to deal with differentials, the way vectors on different points in space are related, etc. – neglecting (at first sight, explore every footnote in detail!) the tower of mathematical structures you actually need to do this precisely.

But I would regard Lev Landau sort of a Richard Feynman of The East, so it takes his genius not make any silly mistakes by taking the seemingly intuitive notions too literally. And I recommend this book only when combined with a most rigorous introduction.

For additional reading and ‘bridging the gap’…

I recommend Sean Carroll’s  Lecture Notes on General Relativity from 1997 (precursor of his textbook), together with his short No-Nonsense Introduction to GR as a summary. Carroll switches between more intuitive physics and very formal math. He keeps his conversational tone – well known to readers of his popular physics books – which makes his lecture notes a pleasure to read.

__________________________________

So this was a long-winded way to present just a bunch of links. This post should also serve as sort of an excuse that I haven’t been really active on social media or followed up closely on other blogs recently. It seems in winter I am secluding myself from the world in order to catch up on theoretical physics.

Give the ‘Thing’ a Subnet of Its Own!

To my surprise, the most clicked post ever on this blog is this:

Network Sniffing for Everyone:
Getting to Know Your Things (As in Internet of Things)

… a step-by-step guide to sniff the network traffic of your ‘things’ contacting their mothership, plus a brief introduction to networking. I wanted to show how you can trace your networked devices’ traffic without any specialized equipment but being creative with what many users might already have, by turning a Windows PC into a router with Internet Connection Sharing.

Recently, an army of captured things took down part of the internet, and this reminded me of this post. No, this is not one more gloomy article about the Internet of Things. I just needed to use this Internet Sharing feature for the very purpose it was actually invented.

The Chief Engineer had finally set up the perfect test lab for programming and testing freely programmable UVR16x2 control systems (successor of UVR1611). But this test lab was a spot not equipped with wired ethernet, and the control unit’s data logger and ethernet gateway, so-called CMI (Control and Monitoring Interface), only has a LAN interface and no WLAN.

So an ages-old test laptop was revived to serve as a router (improving its ecological footprint in passing): This notebook connects to the standard ‘office’ network via WLAN: This wireless connection is thus the internet connection that can be shared with a device connected to the notebook’s LAN interface, e.g. via a cross-over cable. As explained in detail in the older article the router-laptop then allows for sniffing the traffic, – but above all it allows the ‘thing’ to connect to the internet at all.

This is the setup:

Using a notebook with Internet Connection Sharing enabled as a router to connect CMI (UVR16x2's ethernet gatway) to the internet

The router laptop is automatically configured with IP address 192.168.137.1 and hands out addresses in the 192.168.137.x network as a DHCP server, while using an IP address provided by the internet router for its WLAN adapter (indicated here as commonly used 192.168.0.x addresses). If Windows 10 is used on the router-notebook, you might need to re-enable ICS after a reboot.

The control unit is connected to the CMI via CAN bus – so the combination of test laptop, CMI, and UVR16x2 control unit is similar to the setup used for investigating CAN monitoring recently.

The CMI ‘thing’ is tucked away in a private subnet dedicated to it, and it cannot be accessed directly from any ‘Office PC’ – except the router PC itself. A standard office PC (green) effectively has to access the CMI via the same ‘cloud’ route as an Internet User (red). This makes the setup a realistic test for future remote support – when the CMI plus control unit has been shipped to its proud owner and is configured on the final local network.

The private subnet setup is also a simple workaround in case several things can not get along well with each other: For example, an internet TV service flooded CMI’s predecessor BL-NET with packets that were hard to digest – so BL-NET refused to work without a further reboot. Putting the sensitive device in a private subnet – using a ‘spare part’ router, solved the problem.

The Chief Engineer's quiet test lab for testing and programming control units

And Now for Something Completely Different: Rotation Heat Pump!

Heat pumps for space heating are all very similar: Refrigerant evaporates, pressure is increased by a scroll compressor, refrigerant condenses, pressure is reduced in an expansion value. *yawn*

The question is:

Can a compression heat pump be built in a completely different way?

Austrian start-up ECOP did it: They  invented the so-called Rotation Heat Pump.

It does not have a classical compressor, and the ‘refrigerant’ does not undergo a phase transition. A pressure gradient is created by centrifugal forces: The whole system rotates, including the high-pressure (heat sink) and low-pressure (source) heat exchanger. The low pressure part of the system is positioned closer to the center of the rotation axis, and heat sink and heat source are connected at the axis (using heating water). The system rotates at up to 1800 rounds per minute.

A mixture of noble gases is used in a Joule (Brayton) process, driven in a cycle by a ventilator. Gas is compressed and thus heated up; then it is cooled at constant pressure and energy is released to the heat sink. After expanding the gas, it is heated up again at low pressure by the heat source.

In the textbook Joule cycle, a turbine and a compressor share a common axis: The energy released by the turbine is used to drive the compressor. This is essential, as compression and expansion energies are of the same order of magnitude, and both are considerably larger than the net energy difference – the actual input energy.

In contrast to that, a classical compression heat pump uses a refrigerant that is condensed while releasing heat and then evaporated again at low pressure. There is no mini-turbine to reduce the pressure but only an expansion valve, as there is not much energy to gain.

This explains why the Rotation Heat Pumps absolutely have to have compression efficiencies of nearly 100%, compared to, say, 85% efficiency of a scroll compressor in heat pump used for space heating:

Some numbers for a Joule process (from this German ECOP paper): On expansion of the gas 1200kW are gained, but 1300kW are needed for compression – if there would be no losses at all. So the net input power is 100kW. But if the efficiency of the compression is reduced from 100% to 80% about 1600kW are needed and thus a net input power of 500kW – five times the power compared to the ideal compressor! The coefficient of performance would plummet from 10 to 2,3.

I believe these challenging requirements are why Rotation Heat Pumps are ‘large’ and built for industrial processes. In addition to the high COP, this heat pump is also very versatile: Since there are no phase transitions, you can pick your favorite corner of the thermodynamic state diagram at will: This heat pump works for very different combinations temperatures of the hot target and the cold source.

Same Procedure as Every Autumn: New Data for the Heat Pump System

October – time for updating documentation of the heat pump system again! Consolidated data are available in this PDF document.

In the last season there were no special experiments – like last year’s Ice Storage Challenge or using the wood stove. Winter was rather mild, so we needed only ~16.700kWh for space heating plus hot water heating. In the coldest season so far – 2012/13 – the equivalent energy value was ~19.700kWh. The house is located in Eastern Austria, has been built in the 1920s, and has 185m2 floor space since the last major renovation.

(More cross-cultural info:  I use thousands dots and decimal commas).

The seasonal performance factor was about 4,6 [kWh/kWh] – thus the electrical input energy was about 16.700kWh / 4,6 ~ 3.600kWh.

Note: Hot water heating is included and we use flat radiators requiring a higher water supply temperature than the floor heating loops in the new part of the house.

Heating season 2015/2016: Performance data for the 'ice-storage-/solar-powered' heat pump system

Red: Heating energy ‘produced’ by the heat pump – for space heating and hot water heating. Yellow: Electrical input energy. Green: Performance Factor = Ratio of these energies.

The difference of 16.700kWh – 3.600kWh = 13.100kWh was provided by ambient energy, extracted from our heat source – a combination of underground water/ice tank and an unglazed ribbed pipe solar/air collector.

The solar/air collector has delivered the greater part of the ambient energy, about 10.500kWh:

Heating season 2015/2016: Energy harvested from air by the collector versus heating-energy

Energy needed for heating per day (heat pump output) versus energy from the solar/air collector – the main part of the heat pump’s input energy. Negative collector energies indicate passive cooling periods in summer.

Peak Ice was 7 cubic meters, after one cold spell of weather in January:

Heating season 2015/2016: Temperature of ambient air, water tank (heat source) and volume of water frozen in the tank.

Ice is formed in the water tank when the energy from the collector is not sufficient to power the heat pump alone, when ambient air temperatures are close to 0°C.

Last autumn’s analysis on economics is still valid: Natural gas is three times as cheap as electricity but with a performance factor well above three heating costs with this system are lower than they would be with a gas boiler.

Is there anything that changed gradually during all these years and which does not primarily depend on climate? We reduced energy for hot tap water heating – having tweaked water heating schedule gradually: Water is heated up once per day and as late as possible, to avoid cooling off the hot storage tank during the night.

We have now started the fifth heating season. This marks also the fifth anniversary of the day we switched on the first ‘test’ version 1.0 of the system, one year before version 2.0.

It’s been about seven years since first numerical simulations, four years since I have been asked if I was serious in trading in IT security for heat pumps, and one year since I tweeted:

Spam Poetry: “Cris-Crossing the Universe”

I have tried my hands at different kinds of experimental internet poetry, and all of the poems turned out to have a dystopic touch or tantalizing hints to some fundamental philosophical truth. Perhaps this says something about 1) The Internet or 2) about my subconsciousness.

Since I have reduced blogging frequency, the number of spam comments plummeted accordingly – from 600 to 150 spam comments in the queue. So it has got harder and harder to find meaningful spam. In addition, there is a new variety: Such comments are not composed of meaningful sentences, but phrases of three or four words are stitched together to form a lengthy comment that sounds like postmodern poetry in its own right.

But I try to rise to the challenge, and even add one more hurdle. Rules for this poem:

  • Each line is a snippet of a spam comment.
  • Snippets must not be edited
  • Only one snippet can be extracted from one spam comment, but not every comment has to be utilized.
  • New: Snippets must be used immediately in the order of spam comments (descending by date), and they must not be re-arranged afterwards.
  • All comments have to be harvested in a single session.

The following lines were taken from about 125 spam comments in the queue on October 1st.

The idea shows through the pamphlet
where people need to respond

temperatures will most likely govern
long-lasting usable cartoon figures

in certain places the floor is sinking
We have a very big problem.

withdrawal insomnia
The arrangement exists because of the persistence

arrangement - persistence

using ontology within all things
There should be one internal link

You’ll be able to move to another location
Could certainly come zombies

A Dreamcatcher bard who have been heard
sober as opposed to
stepping off point
the one that has problems with panic attack

We will dissect too
cris-crossing the universe far far.

cris-crossing the universe

Scattered all over
the location where the profits have been

conspiracy delayed
raving about choosing real humans

our personal fashionable ethos
As opposed to the isolation
produced by Zombie galleries
creating an irritatingly low experience

in the sci fi shooting living space
extremely like black topics

Our favorite self-theory
That particular creep
seriously electrifying

seriously electrifying

Internet of Things. Yet Another Gloomy Post.

Technically, I work with Things, as in the Internet of Things.

As outlined in Everything as a Service many formerly ‘dumb’ products – such as heating systems – become part of service offerings. A vital component of the new services is the technical connection of the Thing in your home to that Big Cloud. It seems every energy-related system has got its own Internet Gateway now: Our photovoltaic generator has one, our control unit has one, and the successor of our heat pump would have one, too. If vendors don’t bundle their offerings soon, we’ll end up with substantial electricity costs for powering a lot of separate gateways.

Experts have warned for years that the Internet of Things (IoT) comes with security challenges. Many Things’ owners still keep default or blank passwords, but the most impressive threat is my opinion is not hacking individual systems: Easily hacked things can be hijacked to serve as zombie clients in a botnet and lauch a joint Distributed Denial of Service attack against a single target. Recently the blog of renowned security reporter Brian Krebs has been taken down, most likely as an act of revenge by DDoSers (Crime is now offered as a service as well.). The attack – a tsunami of more than 600 Gbps – was described as one of the largest the internet had seen so far. Hosting provider OVH was subject to a record-breaking Tbps attack – launched via captured … [cue: hacker movie cliché] … cameras and digital video recorders on the internet.

I am about the millionth blogger ‘reporting’ on this, nothing new here. But the social media news about the DDoS attacks collided with another social media micro outrage  in my mind – about seemingly unrelated IT news: HP had to deal with not-so-positive reporting about its latest printer firmware changes and related policies –  when printers started to refuse to work with third-party cartridges. This seems to be a legal issue or has been presented as such, and I am not interested in that aspect here. What I find interesting is the clash of requirements: After the DDoS attacks many commentators said IoT vendors should be held accountable. They should be forced to update their stuff. On the other hand, end users should remain owners of the IT gadgets they have bought, so the vendor has no right to inflict any policies on them and restrict the usage of devices.

I can relate to both arguments. One of my main motivations ‘in renewable energy’ or ‘in home automation’ is to make users powerful and knowledgable owners of their systems. On the other hand I have been ‘in security’ for a long time. And chasing firmware for IoT devices can be tough for end users.

It is a challenge to walk the tightrope really gracefully here: A printer may be traditionally considered an item we own whereas the internet router provided by the telco is theirs. So we can tinker with the printer’s inner workings as much as we want but we must not touch the router and let the telco do their firmware updates. But old-school devices are given more ‘intelligence’ and need to be connected to the internet to provide additional services – like that printer that allows to print from your smartphone easily (Yes, but only if your register it at the printer manufacturer’s website before.). In addition, our home is not really our castle anymore. Our computers aren’t protected by the telco’s router / firmware all the time, but we work in different networks or in public places. All the Things we carry with us, someday smart wearable technology, will check in to different wireless and mobile networks – so their security bugs should better be fixed in time.

If IoT vendors should be held accountable and update their gadgets, they have to be given the option to do so. But if the device’s host tinkers with it, firmware upgrades might stall. In order to protect themselves from legal persecution, vendors need to state in contracts that they are determined to push security updates and you cannot interfere with it. Security can never be enforced by technology only – for a device located at the end user’s premises.

It is horrible scenario – and I am not sure if I refer to hacking or to proliferation of even more bureaucracy and over-regulation which should protect us from hacking but will add more hurdles for would-be start-ups that dare to sell hardware.

Theoretically a vendor should be able to separate the security-relevant features from nice-to-have updates. For example, in a similar way, in smart meters the functions used for metering (subject to metering law) should be separated from ‘features’ – the latter being subject to remote updates while the former must not. Sources told me that this is not an easy thing to achieve, at least not as easy as presented in the meters’ marketing brochure.

Linksys's Iconic Router

That iconic Linksys router – sold since more than 10 years (and a beloved test devices of mine). Still popular because you could use open source firmware. Something that new security policies might seek to prevent.

If hardware security cannot be regulated, there might be more regulation of internet traffic. Internet Service Providers could be held accountable to remove compromised devices from their networks, for example after having noticed the end user several times. Or smaller ISPs might be cut off by upstream providers. Somewhere in the chain of service providers we will have to deal with more monitoring and regulation, and in one way or other the playful days of the earlier internet (romanticized with hindsight, maybe) are over.

When I saw Krebs’ site going offline, I wondered what small business should do in general: His site is now DDoS-protected by Google’s Project Shield, a service offered to independent journalists and activists after his former pro-bono host could not deal with the load without affecting paying clients. So one of the Siren Servers I commented on critically so often came to rescue! A small provider will not be able to deal with such attacks.

WordPress.com should be well-protected, I guess. I wonder if we will all end up hosting our websites at such major providers only, or ‘blog’ directly to Facebook, Google, or LinkedIn (now part of Microsoft) to be safe. I had advised against self-hosting WordPress myself: If you miss security updates you might jeopardize not only your website, but also others using the same shared web host. If you live on a platform like WordPress or Google, you will complain from time to time about limited options or feature updates you don’t like – but you don’t have to care about security. I compare this to avoiding legal issues as an artisan selling hand-made items via Amazon or the like, in contrast to having to update your own shop’s business logic after every change in international tax law.

I have no conclusion to offer. Whenever I read news these days – on technology, energy, IT, anything in between, The Future in general – I feel reminded of this tension: Between being an independent neutral netizen and being plugged in to an inescapable matrix, maybe beneficial but Borg-like nonetheless.

Re-Visiting Carnot’s Theorem

The proof by contradiction used in physics textbooks is one of those arguments that appear surprising, then self-evident, then deceptive in its simplicity. You – or maybe only: I – cannot resist turning it over and over in your head again, viewing it from different angles.

tl;dr: I just wanted to introduce the time-honored tradition of ASCII text art images to illustrate Carnot’s Theorem, but this post got out of hand when I mulled about how to  refute an erroneous counter-argument. As there are still research papers being written about Carnot’s efficiency I feel vindicated for writing a really long post though.

Carnot‘s arguments prove that there is a maximum efficiency of a thermodynamic heat engine – a machine that turns heat into mechanical energy. He gives the maximum value by evaluating one specific, idealized process, and then proves that a machine with higher efficiency would give rise to a paradox. The engine uses part of the heat available in a large, hot reservoir of heat and turns it into mechanical work and waste heat – the latter dumped to a colder ‘environment’ in a 4-step process. (Note that while our modern reformulation of the proof by contradiction refers to the Second Law of Thermodynamics, Carnot’s initial version was based on the caloric theory.)

The efficiency of such an engine η – mechanical energy per cycle over input heat energy – only depends on the two temperatures (More details and references here):

\eta_\text{carnot} = \frac {T_1-T_2}{T_1}

These are absolute temperatures in Kelvin; this universal efficiency can be used to define what we mean by absolute temperature.

I am going to use ‘nice’ numbers. To make ηcarnot equal to 1/2, the hot temperature
T1 = 273° = 546 K, and the colder ‘environment’ has T2 = 0°C = 273 K.

If this machine is run in reverse, it uses mechanical input energy to ‘pump’ energy from the cold environment to the hot reservoir – it is a heat pump using the ambient reservoir as a heat source. The Coefficient of Performance (COP, ε) of the heat pump is heat output over mechanical input, the inverse of the efficiency of the corresponding engine. εcarnot is 2 for the temperatures given above.

If we combine two such perfect machines – an engine and a heat pump, both connected to the hot space and to the cold environment, their effects cancel out: The mechanical energy released by the engine drives the heat pump which ‘pumps back’ the same amount of energy.

In the ASCII images energies are translated to arrows, and the number of parallel arrows indicates the amount of energy per cycle (or power). For each device, the number or arrows flowing in and out is the same; energy is always conserved. I am viewing this from the heat pump’s perspective, so I call the cold environment the source, and the hot environment room.

Neither of the heat reservoirs are heated or cooled in this ideal case as the same amount of energy flows from and to each of the heat reservoirs:

|----------------------------------------------------------|
|         Hot room at temperature T_1 = 273°C = 546 K      |
|----------------------------------------------------------|
           | | | |                         | | | |
           v v v v                         ^ ^ ^ ^
           | | | |                         | | | |
       |------------|                 |---------------|
       |   Engine   |->->->->->->->->-|   Heat pump   |
       |  Eta = 1/2 |->->->->->->->->-| COP=2 Eta=1/2 |
       |------------|                 |---------------|
             | |                             | |
             v v                             ^ ^
             | |                             | |
|----------------------------------------------------------| 
|        Cold source at temperature T_2 = 0°C = 273 K      | 
|----------------------------------------------------------|

If either of the two machines works less than perfectly and in tandem with a perfect machine, anything is still fine:

If the engine is far less than perfect and has an efficiency of only 1/4 – while the heat pump still works perfectly – more of the engine’s heat energy input is now converted to waste heat and diverted to the environment:

|----------------------------------------------------------|
|         Hot room at temperature T_1 = 273°C = 546 K      |
|----------------------------------------------------------|
           | | | |                           | |  
           v v v v                           ^ ^  
           | | | |                           | |  
       |------------|                 |---------------|
       |   Engine   |->->->->->->->->-|   Heat pump   |
       |  Eta = 1/4 |                 | COP=2 Eta=1/2 |
       |------------|                 |---------------|
            | | |                             |
            v v v                             ^
            | | |                             |
|----------------------------------------------------------| 
|        Cold source at temperature T_2 = 0°C = 273 K      | 
|----------------------------------------------------------|

Now two net units of energy flow from the hot room to the environment (summing up the arrows to and from the devices):

|----------------------------------------------------------|
|         Hot room at temperature T_1 = 273°C = 546 K      |
|----------------------------------------------------------|
                              | |                                
                              v v                                
                              | | 
                     |------------------|
                     |   Combination:   |
                     | Eta=1/4 COP=1/2  |
                     |------------------|                            
                              | |                              
                              v v                              
                              | |                             
|----------------------------------------------------------| 
|        Cold source at temperature T_2 = 0°C = 273 K      | 
|----------------------------------------------------------|

Using a real-live heat pump with a COP of 3/2 (< 2) together with a perfect engine …

|----------------------------------------------------------|
|         Hot room at temperature T_1 = 273°C = 546 K      |
|----------------------------------------------------------|
          | | | |                             | | | 
          v v v v                             ^ ^ ^ 
          | | | |                             | | |
       |------------|                 |-----------------|
       |   Engine   |->->->->->->->->-|    Heat pump    |
       |  Eta = 1/2 |->->->->->->->->-|     COP=3/2     |
       |------------|                 |-----------------|
            | |                                 |
            v v                                 ^
            | |                                 |
|----------------------------------------------------------| 
|        Cold source at temperature T_2 = 0°C = 273 K      | 
|----------------------------------------------------------|

… causes again a non-paradoxical net flow of one unit of energy from the room to the environment.

In the most extreme case  a poor heat pump (not worth this name) with a COP of 1 just translates mechanical energy into heat energy 1:1. This is a resistive heating element, a heating rod, and net heat fortunately flows from hot to cold without paradoxes:

|----------------------------------------------------------|
|         Hot room at temperature T_1 = 273°C = 546 K      |
|----------------------------------------------------------|
            | |                                |   
            v v                                ^   
            | |                                |   
       |------------|                 |-----------------|
       |   Engine   |->->->->->->->->-|   'Heat pump'   |
       |  Eta = 1/2 |                 |     COP = 1     |
       |------------|                 |-----------------|
             |                                 
             v                                 
             |                                 
|----------------------------------------------------------| 
|        Cold source at temperature T_2 = 0°C = 273 K      | 
|----------------------------------------------------------|

The textbook paradox in encountered, when an ideal heat pump is combined with an allegedly better-than-possible engine, e.g. one with an efficiency:

ηengine = 2/3 (> ηcarnot = 1/2)

|----------------------------------------------------------|
|         Hot room at temperature T_1 = 273°C = 546 K      |
|----------------------------------------------------------|
           | | |                           | | | |
           v v v                           ^ ^ ^ ^
           | | |                           | | | |
       |------------|                 |---------------|
       |   Engine   |->->->->->->->->-|   Heat pump   |
       |  Eta = 2/3 |->->->->->->->->-| COP=2 Eta=1/2 |
       |------------|                 |---------------|
             |                               | |
             v                               ^ ^
             |                               | |
|----------------------------------------------------------| 
|        Cold source at temperature T_2 = 0°C = 273 K      | 
|----------------------------------------------------------|

The net effect / heat flow is then:

|----------------------------------------------------------|
|        Hot room at temperature T_1 = 273°C = 546 K       | 
|----------------------------------------------------------| 
                             | 
                             ^ 
                             | 
                   |------------------| 
                   |   Combination:   | 
                   | Eta=3/2; COP=1/2 | 
                   |------------------| 
                             | 
                             ^ 
                             | 
|----------------------------------------------------------| 
|       Cold source at temperature T_2 = 0°C = 273 K       | 
|----------------------------------------------------------|

One unit of heat would flow from the environment to the room, from the colder to the warmer body without any other change being made to the system. The combination of these machines would violate the Second Law of Thermodynamics; it is a Perpetuum Mobile of the Second Kind.

If the heat pump has a higher COP than the inverse of the perfect engine’s efficiency, a similar paradox arises, and again one unit of heat flows in the forbidden direction:

|----------------------------------------------------------|
|         Hot room at temperature T_1 = 273°C = 546 K      |
|----------------------------------------------------------|
            | |                             | | |
            v v                             ^ ^ ^
            | |                             | | |
       |------------|                 |---------------|
       |   Engine   |->->->->->->->->-|   Heat pump   |
       |  Eta = 1/2 |                 |    COP = 3    |
       |------------|                 |---------------|
             |                               | |
             v                               ^ ^
             |                               | |
|----------------------------------------------------------| 
|        Cold source at temperature T_2 = 0°C = 273 K      | 
|----------------------------------------------------------|

A weird question: Can’t we circumvent the paradox if we pair the impossible superior engine with a poor heat pump?

|----------------------------------------------------------|
|         Hot room at temperature T_1 = 273°C = 546 K      |
|----------------------------------------------------------|
           | | |                             | |  
           v v v                             ^ ^  
           | | |                             | |  
       |------------|                 |---------------|
       |   Engine   |->->->->->->->->-|   Heat pump   |
       |  Eta = 2/3 |->->->->->->->->-|    COP = 1    |
       |------------|                 |---------------|
             |                                
             v                                
             |                                
|----------------------------------------------------------| 
|        Cold source at temperature T_2 = 0°C = 273 K      | 
|----------------------------------------------------------

Indeed: If the COP of the heat pump (= 1) is smaller than the inverse of the engine’s efficiency (3/2), there will be no apparent violation of the Second Law – one unit of net heat flows from hot to cold.

An engine with low efficiency 1/4 would ‘fix’ the second paradox involving the better-than-perfect heat pump:

|----------------------------------------------------------|
|         Hot room at temperature T_1 = 273°C = 546 K      |
|----------------------------------------------------------|
           | | | |                          | | |
           v v v v                          ^ ^ ^
           | | | |                          | | |
       |------------|                 |---------------|
       |   Engine   |->->->->->->->->-|   Heat pump   |
       |  Eta = 1/4 |                 |     COP=3     |
       |------------|                 |---------------|
            | | |                            | |
            v v v                            ^ ^
            | | |                            | |
|----------------------------------------------------------| 
|        Cold source at temperature T_2 = 0°C = 273 K      | 
|----------------------------------------------------------|

But we cannot combine heat pumps and engines at will, just to circumvent the paradox – one counter-example is sufficient: Any realistic engine combined with any realistic heat pump – plus all combinations of those machines with ‘worse’ ones – have to result in net flow from hot to cold …

The Second Law identifies such ‘sets’ of engines and heat pumps that will all work together nicely. It’s easier to see this when all examples are condensed into one formula:

The heat extracted in total from the hot room – Q1 –  is the difference of heat used by the engine and heat delivered by the heat pump, both of which are defined in relation to the same mechanical work W:

Q_1 = W\left (\frac{1}{\eta_\text{engine}}-\varepsilon_\text{heatpump}\right)

This is also automatically equal to Qas another quick calculation shows or by just considering that energy is conserved: Some heat goes into the combination of the two machines, part of it – W – flows internally from the engine to the heat pump. But no part of the input Q1 can be lost, so the output of the combined machine has to match the input. Energy ‘losses’ such as energy due to friction will flow to either of the heat reservoirs: If an engine is less-then-perfect, more heat will be wasted to the environment; and if the heat pump is less-than-perfect a greater part of mechanical energy will be translated to heat only 1:1. You might be even lucky: Some part of heat generated by friction might end up in the hot room.

As Q1 has to be > 0 according to the Second Low, the performance numbers have to related by this inequality:

\frac{1}{\eta_\text{engine}}\geq\varepsilon_\text{heatpump}

The equal sign is true if the effects of the two machines just cancel each other.

If we start from a combination of two perfect machines (ηengine = 1/2 = 1/εheatpump) and increase either ηengine or εheatpump, this condition would be violated and heat would flow from cold to hot without efforts.

But also an engine with efficiency = 1 would work happily with the worst heat pump with COP = 1. No paradox would arise at first glance  – as 1/1 >= 1:

|----------------------------------------------------------|
|         Hot room at temperature T_1 = 273°C = 546 K      |
|----------------------------------------------------------|
             |                                |   
             v                                ^   
             |                                |   
       |------------|                 |-----------------|
       |   Engine   |->->->->->->->->-|   'Heat pump'   |
       |   Eta = 1  |                 |      COP=1      |
       |------------|                 |-----------------|
                                               
                                               
                                               
|----------------------------------------------------------| 
|        Cold source at temperature T_2 = 0°C = 273 K      | 
|----------------------------------------------------------|

What’s wrong here?

Because of conservation of energy ε is always greater equal 1; so the set of valid combinations of machines all consistent with each other is defined by:

\frac{1}{\eta_\text{engine}}\geq\varepsilon_\text{heatpump}\geq1

… for all efficiencies η and COPs / ε of machines in a valid set. The combination η = ε = 1 is still not ruled out immediately.

But if the alleged best engine (in a ‘set’) would have an efficiency of 1, then the alleged best heat pump would have an Coefficient of Performance of only 1 – and this is actually the only heat pump possible as ε has to be both lower equal and greater equal than 1. It cannot get better without creating paradoxes!

If one real-live heat pump is found that is just slightly better than a heating rod – say
ε = 1,1 – then performance numbers for the set of consisent, non-paradoxical machines need to fulfill:

\eta_\text{engine}\leq\eta_\text{best engine}

and

\varepsilon_\text{heatpump}\leq\varepsilon_\text{best heatpump}

… in addition to the inequality relating η and ε.

If ε = 1,1 is a candidate for the best heat pump, a set of valid machines would comprise:

  • All heat pumps with ε between 1 and 1,1 (as per limits on ε)
  • All engines with η between 0 and 0,9 (as per inequality following the Second Law plus limit on η).

Consistent sets of machines are thus given by a stronger condition – by adding a limit for both efficiency and COP ‘in between’:

\frac{1}{\eta_\text{engine}}\geq\text{Some Number}\geq\varepsilon_\text{heatpump}\geq1

Carnot has designed a hypothetical ideal heat pump that could have a COP of εcarnot = 1/ηcarnot. It is a limiting case of a reversible machine, but feasible on principle. εcarnot  is thus a valid upper limit for heat pumps, a candidate for Some Number. In order to make this inequality true for all sets of machines (ideal ones plus all worse ones) then 1/ηcarnot = εcarnot also constitutes a limit for engines:

\frac{1}{\eta_\text{engine}}\geq\frac{1}{\eta_\text{carnot}}\geq\varepsilon_\text{heatpump}\geq1

So in order to rule out all paradoxes, Some Number in Between has to be provided for each set of machines. But what defines a set? As machines of totally different making have to work with each other without violating this equality, this number can only be a function of the only parameters characterizing the system – the two temperatures

Carnot’s efficiency is only a function of the temperatures. His hypothetical process is reversible, the machine can work either as a heat pump or an engine. If we could come up with a better process for a reversible heat pump (ε > εcarnot), the machine run in reverse would be an engine with η less than ηcarnot, whereas a ‘better’ engine would lower the upper bound for heat pumps.

If you have found one truly reversible process, both η and ε associated with it are necessarily the upper bounds of performance of the respective machines, so you cannot push Some Number in one direction or the other, and the efficiencies of all reversible engines have to be equal – and thus equal to ηcarnot. The ‘resistive heater’ with ε = 1 is the iconic irreversible device. It will not turn into a perfect engine with η = 1 when ‘run in reverse’.

The seemingly odd thing is that 1/ηcarnot appears like a lower bound for ε at first glance if you just declare ηcarnot an upper bound for corresponding engines and take the inverse, while in practice and according to common sense it is the maximum value for all heat pumps, including irreversible ones. (As a rule of thumb a typical heat pump for space heating has a COP only 50% of 1/ηcarnot.)

But this ‘contradiction’ is yet another way of stating that there is one universal performance indicator of all reversible machines making use of two heat reservoirs: The COP of a hypothetical ‘superior’ reversible heat pump would be at least 1/ηcarnot  … as good as Carnot’s reversible machine, maybe better. But the same is true for the hypothetical superior engine with an efficiency of at least ηcarnot. So the performance numbers of all reversible machines (all in one set, characterized by the two temperatures) have to be exactly the same.

Steam pump / Verkehrt laufende Dampfmaschine

Historical piston compressor (from the time when engines with pistons looked like the ones in textbooks), installed 1878 in the salt mine of Bex, Switzerland. 1943 it was still in operation. Such machines used in salt processing were considered the first heat pumps.