Newton’s Space Probes Investigate my Ribbons of Diffraction

I have been calculating diffraction patterns for visible light. Curves are displaced to turn the whole structure into a wavy ribbon built from colored wires or threads. I have turned these images into collages, adding Isaac Newton's drawings from Opticks (1704). The more I moved Newton's figures around, and the more I twisted the ribbons … Continue reading Newton’s Space Probes Investigate my Ribbons of Diffraction

Transforming the Celestial Sphere

A spherical spaceship swooshes by at 99% of the speed of light. What will it look like? Squashed because of Lorentz contraction - like an ellipsoid? No. The outline of a moving sphere will remain spherical. Roger Penrose explained this first in 1958 - 50 years after Einstein's formulation of the theory of special relativity. … Continue reading Transforming the Celestial Sphere

Complex Alien Eclipse

My colorful complex function lived in a universe of white light. I turned off the light. Turned it into its negative. Expected it to look bleak. Like thin white bones on black canvas, cartoon skeletons of imaginary alien creatures. But it is more like the total solar eclipse I watched in 1999. There is interference, … Continue reading Complex Alien Eclipse

Familiar Wave. Come to Rescue.

A poem from text snippets of my last three posts, interlaced with a metamorphosis of my last drawing. ~ ~~ ~~~ The familiar wave is in the middle, oblique. accessible to intuitive interpretation. To tame it, sort of, come to rescue Or are they? Going from up to down you only care about directions What … Continue reading Familiar Wave. Come to Rescue.

Joys of Geometry

Creating figures with math software does not feel like fabricating illustrations for science posts. It is more of a meditation on geometry. I want to literally draw every line. I am not using grid lines or rendered surfaces. I craft a parametric curve for every line. A curve is set of equations. Yet, playing with … Continue reading Joys of Geometry

Spins, Rotations, and the Beauty of Complex Numbers

This is a simple quantum state ... |➚> = α|↑> + β|↓> ... built from an up |↑> state and a down state |↓>. α and β are complex numbers. The result |➚> is in the middle, oblique. The oblique state is a superposition or the up and down base states. Making a measurement, you … Continue reading Spins, Rotations, and the Beauty of Complex Numbers

Galaxies of Diffraction

These - the arrangement of points in the image below - are covectors, sort of. I wrote about them, some time ago. They are entities dual to vectors. Eating vectors, spitting out numbers. Vectors are again 'co' to vectors; they will eat covectors. If vectors live in a space with axes all perpendicular to each … Continue reading Galaxies of Diffraction